308

IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 4, APRIL 2006

Non-Violation Set Scheduling for
Two-Dimensional Optical MEMS Switches

Xin Li, Member, IEEE, Zhen Zhou, Member, IEEE, and Mounir Hamdi, Senior Member, IEEE

Abstract— Optical fabrics based on 2D MEMS suffer time-
consuming reconfiguration delay. Traditional time slot assign-
ment (TSA) and burst scheduling schemes do not solve the
problem effectively. In this letter, we propose a novel non-
violation set scheduling scheme which allows overlap traffic
transmission of current schedule with the fabric setup for the
next schedule. It makes the switch work as if no reconfiguration
delay existed. A dynamic diagonal (DD) algorithm following this
scheme shows superior performance. In addition, it runs at much
lower time complexity and is readily implemented in hardware.

Index Terms— Optical switch, MEMS, reconfiguration delay,
scheduling.

I. INTRODUCTION

VER the past few years, there is increasing interest

in using optical fabrics. Compared to its electronic
counterparts, optical fabrics are cheaper and smaller in size.
They provide more scalability, higher bit rate, and lower power
consumption on economical bases. Current technologies for
optical fabric include optical micro-electro-mechanical sys-
tems (MEMS), liquid crystal, bubble switches, thermo-optic,
and so on [1].

Among them, silicon-based optical MEMS have turned out
to be most attractive [2]. Take the popular two-dimensional
(2D) MEMS for example. The basic switching elements
are tiny mirrors with binary ON/OFF positions, which are
arranged in a crossbar configuration (see Fig. 1). Switching
is done by reflection of light. In general, if the (¢, 7) mirror is
raised up (i.e., in the ON position), it directs light from the
ith input fiber to the jth output fiber.

The time required for establishing a connection between
inputs and outputs in 2D MEMS optical switches (or re-
configuration delay) takes hundreds of nanoseconds to a few
milliseconds [1]. This includes mechanical settling (i.e., to
raise up the mirrors), synchronization, and the like. The delay
is around 10 to 10° time slots for a system with slotted time
equals to 50 ns (64 bytes at 10 Gb/s). In this case, traditional
slot-by-slot scheduling is no longer efficient. For example,
even when each reconfiguration takes only one time slot, at
least half of the bandwidth is wasted on setting up the fabric
in between each transmission.

Obviously, the scheduling rate needs to be slowed down and
each schedule holds for several slots. Time Slot Assignment

Manuscript received November 1, 2005. The associate editor coordinating
the review of this letter and approving it for publication was Dr. Maode Ma.
This work was supported in part by Hong Kong Research Grant Council
(Grant Number: RGC HKUST6160/03E)

The authors are with the Department of Computer Science, the Hong Kong
University of Science & Technology, Clear Water Bay, Hong Kong (e-mail:
{lixin, cszz, hamdi} @cs.ust.hk).

Digital Object Identifier 10.1109/LCOMM.2006.04029.

i S SANANRN
IR RN
IR RN
RS \ \ SN

01 03 04 05

Fig. 1. A 5 x 5 MEMS optical switch with crossbar structure. The mirrors
(1,1), (2,4), (3,2), (4,5) and (5,3) are in the ON state. Optical signals
from inputs Iy, I, I3, I4, I5 are switched to outputs O1, O4, O2, Os, Os.

(TSA) scheduling [3]-[6] is a common approach. However
most TSA algorithms are quite unable to deal with the recon-
figuration delay effectively; so they turn the research focus to
alleviate the side effect of the delay to the system (e.g. they try
to minimize the increased fabric speedup requirement). Other
approaches, such as Burst Scheduling scheme [7], suffer from
reconfiguration delay too.

However, that does not mean we have to accept that
scheduling schemes are helpless for reconfiguration delay. We
observe that the special architecture of 2D MEMS allows us
to overlap traffic transmission of the current schedule with the
fabric setup for the next schedule, as long as the scheduling
scheme guarantees no interference between them. By doing
so, the fabric is setup concurrently with traffic transmission.
Then the switch works as if no reconfiguration delay existed.
In this letter, we introduce a novel non-violation set scheduling
scheme which successfully hides the fabric reconfiguration
time. A scheduling algorithm that follows this scheme, namely
the Dynamic Diagonal (DD) algorithm, is proposed in Section
V.

II. SWITCH MODEL

The optical 2D MEMS fabric is modeled as a non-blocking
crossbar which realizes any one-to-one mapping between
inputs to outputs. For an N x N switch, such a mapping
is described by a switch configuration (or schedule) Pnxn;
where P is a (0,1)-matrix with at most one nonzero element
for each row and column (or permutation matrix). p;; = 1

1089-7798/06$20.00 (© 2006 IEEE

LI et al.: NON-VIOLATION SET SCHEDULING FOR TWO-DIMENSIONAL OPTICAL MEMS SWITCHES 309

10000 01000 00100
01000 00100 00010
00100 00010 0000O0 1
00010 00001 0000O
00001 00000 10000

sGD' SGD? sGD3

00010 00001 00000
00001 00000 10000
00000 10000 01000
10000 01000 00100
01000 00100 00010

sGD* sGD® sGD®

Fig. 2. A complete sequence of schedules of Static Generalized Diagonal (SGD) on a 5 X 5 switch.

means switch input ¢ connects output 5 in schedule P. A fixed,
nonzero reconfiguration delay ¢ is associated with the model.
Time is slotted inside the switch and ¢ is in unit of time slots.

Packets are segmented into fixed size cells before entering
the fabric. Traffic accumulates periodically every T slots. T'
is a predefined system constant. The accumulated traffic batch
is stored in a traffic matrix Dy n. d;; denotes the number
of cells received in input 7 destined to output j during the
accumulation stage. Traffic should be admissible; meaning that
the line sum of D is no larger than 7. That is, Zjvzl di; <T

and SN di; <T.

III. NON-VIOLATION SET SCHEDULING SCHEME

Although TSA scheduling schemes abandon attempts to
deal with fabric reconfiguration time, we find a turn for the
better in scheduling 2D MEMS switches. Take a 5x5 switch as
shown in Fig. 1 for example. Current connections are between
inputs I, Is, I3, 1, Is and outputs 01, Oy4, Og, Os, Os,
respectively. The light paths of optical signals are shown in
dotted lines. Obviously, all mirrors at the light paths should
be strictly in the OFF position. However, for those not on
the light paths (i.e. mirrors at (1,2), (2,5), (3,3), and so
on, denoted as non-violation set of mirrors), changing them
from OFF to ON does not affect the current transmission. If
the next schedule only uses the non-violation set of mirrors,
the fabric may start to set up the schedule during the current
transmission. Suppose each schedule is held for § slots, then
as soon as the current transmission ends, the next schedule
has been set up and transmission can start right away. In this
manner, the fabric works as if no reconfiguration delay existed.

A. Scheduling Scheme

The above observation is described more precisely in the
following definition.

Definition 1 (Non-Violation Set): Given a schedule Py v,
its non-violation set NV (P)nx is an (0,1)-matrix such that

0 otherwise

The non-violation set NV (P) includes all mirrors that are
not on any light path in schedule P. Notice that P C NV (P),
because ON mirrors for the current schedule can still be used
in the next one without additional setup time.

If a scheduling scheme successfully produces two consec-
utive schedules P* and PF*!, where P*t! C NV(P*);
then the reconfiguration delay is invisible outside the switch.
It is called a non-violation scheduling scheme in this letter.
More specifically, given a traffic matrix D and delay 6, a
non-violation set scheduling scheme finds a set of schedules
(P',....Pk, Pk+1 PK) which satisfies the following.

« Each schedule restricts itself on using switching elements
that belong to the non-violation set of the previous
schedule P**1 C NV (PF).

o Each schedule holds for § slots in order to overlap the
packet transmission of P* and fabric setup of P**!,

« They cover the traffic matrix; Zszl 5P > D.

Notice that two consecutive schedules P* and P**! are not

necessarily different.

B. Example: Static Generalized Diagonal Sequence

An example of non-violation schedules is the Static Gen-
eralized Diagonal (SGD) sequence. The SGD sequence for
an N x N switch includes N + 1 schedules, SGD! to
SGDN*1. Generally speaking, input i sequentially con-
nects to output 7,7 + 1,..., N,idle,1,...,2 — 1 in schedule
SGD! to SGDN+L. Therefore for Vk, SGD(k+1) moed N
NV (SGD¥), and we deminish the effect of reconfiguration
delay. Fig. 2 shows an example on a 5 x 5 switch.

IV. DYNAMIC DIAGONAL(DD) ALGORITHM

SGD sequence fairly serves every input-output connection
and works perfectly under uniform traffic. However the rigid
schedules cannot adapt to various traffic patterns. An enhanced
non-violation set scheduling scheme, Dynamic Diagonal (DD)
algorithm is proposed here.

Algorithm Dynamic Diagonal (DD)
Input:
Current schedule P* and residue request matrix R
Output:
Next schedule P*+!
Procedure:

1) Initialize empty schedule P*+!. Set all outputs avail-
able, OutN = [1]]\]

2) Find the non-violation set of current schedule NV (P*).

3) Screen out the connection requests using the non-
violation set of mirrors, store the results in the non-
violation request matrix NV R in which

S { 1 if nu(P*);; =1 and 75 # 0

0 otherwise
4) If NVR is empty, we fail to find a schedule which can
overlap its setup with P*’s transmission. Setup of P¥+1
has to wait until P* finishes. ¢ extra delay is therefore
suffered and P**! can use every mirror.
if (NV R is empty)
update NVR, if (r;; # 0) nvry; = 1, else nvry; =0
set flag overlap = false
5) Determine schedule P¥+1.

310

for (input i =1 to N)
for (output j =1 to N)
if ((nvr;; = 1) and (out; = 1))
assign output j to input g, pfj =1, out; =0

6) Update residue request matrix.

R=(R— 0Pkt
7) Setup fabric connections.

if (overlap) setup schedule P**! now

else setup schedule P*+! after § slots

Given a traffic batch, the first schedule P! starts with
R = D and all switching elements are available. Starting from
input 1, each input sequentially searches for outputs 1 to N,
and connects to the first available output. If the traffic load
is high and traffic matrix D contains no zero entries, P! is
the same as the SG'D! pattern. Then the connections are set
up accordingly during [1, 4] slots. In [§ 4 1,24] slots, traffic
are switched out according to schedule Pl; meanwhile P2 is
determined and set up for R = R — § P'. However, P? could
be the same as P! if all diagonal connections have requests
(i.e., Vi, r;; # 0). The connection pattern evolves only when
some input finishes transmit all its cells for the current output.
Then in the next schedule, it will try to connect to a new output
and so on. The procedure repeats until R is empty.

Therefore, the DD algorithm dynamically adjusts the sched-
ule according to the traffic demands. It deminishes the recon-
figuration delay more effectively for any traffic pattern.

V. PERFORMANCE ANALYSIS
A. Time Complexity and Hardware Implementation

Each execution of the DD algorithm is dominated by step 2)
to 5), for a total time complexity of O(N?). This is much more
efficient than the TSA algorithms, such as EXACT O(N 5) [31,
K-T O(N*) [4] and DOUBLE O(N?1log N) [5]. To the best
of our knowledge, most TSA algorithms only run in software
with slow scheduling speed. A significant advantage of DD
algorithm is that it can be easily implemented in hardware. The
scheduler uses an N2-bit vector for a request matrix, an N 2.
bit vector for the non-violation set, an /N-bit vector to check
the availability of the outputs and N decision registers storing
the connection information for each input. Fig. 3 illustrates
the design of the hardware at input <.

B. Simulation Results

The performance of the DD algorithm is tested on a 16 x 16
switch. Traffic matrix are randomly generated, with most
row/column sums equal or close to 7' (a simulation of high
traffic load, which is the real situation under which most
switches works). Various system configurations with different
reconfiguration delays and comparatively short, medium or
long accumulation times are tested. The statistics shown in
Table I are based on 100000 random samples.

Compared to TSA scheduling algorithms, the DD algorithm
shows a promising performance on total transmission time
needed to switch out the traffic. Take one of the best TSA algo-
rithms, DOUBLE [5], for example. Its total transmission time
equals to 27"+ 2N ¢, which is much larger than even the worst
case of DD algorithm. Further more, TSA algorithms constrain

IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 4, APRIL 2006

Request Vector NV Set Vector
ri1 ri2 riN - Nvit nvin

11

Decision

Priority Encoder
123 ... N Register i

Fig. 3. Hardware implementation scheme for DD algorithm. For request and
non-violation set vector, only bits related to input ¢ are shown for simplicity.
The priority encoder has highest priority 1 and lowest priority /N. The selected
output is saved in input ¢’s decision register. Then the corresponding bit in
output vector is updated to 0 (unavailable).

TABLE I
PERFORMANCE OF DD ALGORITHM IN 16 X 16 SWITCH.

Total Trans. Time Num. of

T 0 DD DOUBLE Extra Delay
AVG [SD [MAX [(2T +2NJ) AVG | MAX

10 1 10.84 1.73 19 52 0.67 6
10 2 21.67 3.61 38 84 0.68 6
10 5 54.15 9.16 95 180 0.69 6
50 2 91.86 4.89 108 164 0.42 4
50 10 272.86 14.79 330 420 0.45 4
50 25 682.35 37.27 825 900 0.44 4
100 2 153.27 10.583 199 264 0.38 3
100 | 10 299.19 16.21 370 520 0.46 4
100 | 25 690.57 34.67 825 1000 0.43 4
100 | 50 1380.57 69.45 1650 1800 0.45 4

that the accumulation time 7" has to be larger than NJ (the
least possible reconfiguration time required); while the DD
algorithm fully releases that. Since 7" directly corresponds to
the worst case delay bound [5], DD algorithm can provide
a much better quality-of-service (QoS) guarantee. Although
DD algorithm cannot fully avoid reconfiguration delay, our
simulation results show on average less than one extra delay
is suffered. It is interesting to note that the DD algorithm has a
self-compensating capability: if the non-violation set contains
very few switching elements for the current schedule, then
the next schedule will have a much larger non-violation set to
choose from.

REFERENCES

[1] X. H. Ma and G. H. Kuo, “Optical switching technology comparison:
optical MEMS vs. other technologies,” IEEE Commun. Mag., vol. 41,
pp. S16-S23, Nov. 2003.

[2] P. D. Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS
for optical switching,” IEEE Commun. Mag., vol. 40, pp. 88-95, Mar.
2002.

[3] T. Inukai, “An efficient SS/TDMA time slot assignment algorithm,” IEEE
Trans. Commun., vol. 27, pp. 1449-1455, Oct. 1979.

[4] L. S. Gopal and C. K. Wong, “Minimizing the number of switchings in an
SS/TDMA system,” IEEE Trans. Commun., vol. 33, pp. 497-501, June
1985.

[5] B. Towles and W. J. Dally, “Guaranteed scheduling for switches with
configuration overhead,” IEEE/ACM Trans. Networking, vol. 11, pp. 835—
847, Oct. 2003.

[6] X. Li and M. Hamdi, “On scheduling optical packet switches with
reconfiguration delay,” IEEE J. Select. Areas Commun., vol. 21, pp. 1156—
1164, Sept. 2003.

[7]1 K. Kar, D. Stiliadis, T. V. Lakshman, and L. Tassiulas, “Scheduling
algorithms for optical packet fabrics,” IEEE J. Select. Areas Commun.,
vol. 21, pp. 1143-1155, Sept. 2003.

